Identification of key genes associated with cervical cancer by comprehensive analysis of transcriptome microarray and methylation microarray

نویسندگان

  • MING-YAN LIU
  • HONG ZHANG
  • YUAN-JING HU
  • YU-WEI CHEN
  • XIAO-NAN ZHAO
چکیده

Cervical cancer is the second most commonly diagnosed type of cancer and the third leading cause of cancer-associated mortality in women. The current study aimed to determine the genes associated with cervical cancer development. Microarray data (GSE55940 and GSE46306) were downloaded from Gene Expression Omnibus. Overlapping genes between the differentially expressed genes (DEGs) in GSE55940 (identified by Limma package) and the differentially methylated genes were screened. Gene Ontology (GO) enrichment analysis was subsequently performed for these genes using the ToppGene database. In GSE55940, 91 downregulated and 151 upregulated DEGs were identified. In GSE46306, 561 overlapping differentially methylated genes were obtained through the differential methylation analysis at the CpG site level, CpG island level and gene level. A total of 5 overlapping genes [dipeptidyl peptidase 4 (DPP4); endothelin 3 (EDN3); fibroblast growth factor 14 (FGF14); tachykinin, precursor 1 (TAC1); and wingless-type MMTV integration site family, member 16 (WNT16)] between the 561 overlapping differentially methylated genes and the 242 DEGs were identified, which were downregulated and hypermethylated simultaneously in cervical cancer samples. Enriched GO terms were receptor binding (involving DPP4, EDN3, FGF14, TAC1 and WNT16), ameboidal-type cell migration (DPP4, EDN3 and TAC1), mitogen-activated protein kinase cascade (FGF14, EDN3 and WNT16) and cell proliferation (EDN3, WNT16, DPP4 and TAC1). These results indicate that DPP4, EDN3, FGF14, TAC1 and WNT16 may be involved in the pathogenesis of cervical cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

Identification of specific gene expression after exposure to low dose ionizing radiation revealed through integrative analysis of cDNA microarray data and the interactome

Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning

DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016